
HESSD
12, 9317–9336, 2015

Technical Note:
Application of
artificial neural

networks

Y. Sun et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Hydrol. Earth Syst. Sci. Discuss., 12, 9317–9336, 2015
www.hydrol-earth-syst-sci-discuss.net/12/9317/2015/
doi:10.5194/hessd-12-9317-2015
© Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Hydrology and Earth System
Sciences (HESS). Please refer to the corresponding final paper in HESS if available.

Technical Note: Application of artificial
neural networks in groundwater table
forecasting – a case study in Singapore
swamp forest
Y. Sun1, D. Wendi1, D. E. Kim1, and S.-Y. Liong1,2

1Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road,
Singapore 119227, Singapore
2Willis Research Network, Willis Re Inc., 51 Lime Street, London, UK

Received: 9 July 2015 – Accepted: 25 August 2015 – Published: 10 September 2015

Correspondence to: Y. Sun (tmssy@nus.edu.sg)

Published by Copernicus Publications on behalf of the European Geosciences Union.

9317

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/9317/2015/hessd-12-9317-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/9317/2015/hessd-12-9317-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 9317–9336, 2015

Technical Note:
Application of
artificial neural

networks

Y. Sun et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

Accurate prediction of groundwater table is important for the efficient management of
groundwater resources. Despite being the most widely used tools for depicting the hy-
drological regime, numerical models suffer from formidable constraints, such as exten-
sive data demanding, high computational cost and inevitable parameter uncertainty.5

Artificial neural networks (ANNs), in contrast, can make predictions on the basis of
more easily accessible variables, rather than requiring explicit characterization of the
physical systems and prior knowledge of the physical parameters.

This study applies ANN to predict the groundwater table in a swamp forest of Singa-
pore. A standard multilayer perceptron (MLP) is selected, trained with the Levenberg–10

Marquardt (LM) algorithm. The inputs to the network are solely the surrounding reser-
voir levels and rainfall. The results reveal that ANN is able to produce accurate forecast
with a leading time up to 7 days, whereas the performance slightly decreases when
leading time increases.

1 Introduction15

Physical-based numerical models are commonly used in groundwater table simulation.
Different numerical models have been developed for different regions with different
objectives (e.g. Matej et al., 2007; Pool et al., 2011; Yao et al., 2014). Numerical mod-
els solve the deterministic equations to simulate the groundwater systems based on
the knowledge of the system characteristics, initial conditions, system forcings etc. To20

develop a groundwater numerical model, essential data include: topography, geologi-
cal coverage, soil properties, land use map, vegetation distribution, evapotranspiration
information, hydrologic and climatic data etc. Extensive data demanding makes nu-
merical models highly data dependent and data sensitive. Fitting a physical model is
not possible when data are not sufficient, and the accuracy of the numerical model to25

a great extent depends on how accurate the model inputs are. Numerical models are

9318

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/9317/2015/hessd-12-9317-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/9317/2015/hessd-12-9317-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 9317–9336, 2015

Technical Note:
Application of
artificial neural

networks

Y. Sun et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

also less competent in forecast as most of the system forcings are less predictable.
As a result of aforementioned constraints, numerical models tend to produce imperfect
results in spite of the perfect knowledge of the governing laws (Sun et al., 2010).

To combat the deficiencies of the numerical models, artificial neural networks (ANNs)
have emerged as an alternative modelling and forecasting approach with a variety of5

applications in hydrology research (e.g. French et al., 1992; Maier and Dandy, 2000).
ANNs are essentially statistical models that are simulating the learning capability of the
human brain (Haykin, 1999). Unlike the traditional physical-based models, the ANN-
based approach does not require explicit characterization of the physical properties,
nor accurate representation of the physical parameters, but rather simply determines10

the system patterns based on the relationships between inputs and outputs mapped
in the training process. ANNs typically use input variables that are more accessible to
make predictions, and therefore circumvent the data reliance inherent to the numer-
ical models. In addition, as compared to classical regression techniques, e.g. linear
regression model, ANNs are capable of taking into account of the nonlinear dynamics15

of the hydrological processes and hence produce superior modelling and forecasting
performance.

ANNs in recent years have also been successfully applied in groundwater table
modelling. Yang et al. (1997) utilized ANN to predict groundwater table variations in
subsurface-drained farmland. Coulibaly et al. (2001) calibrated three different ANN20

models using groundwater recordings and other hydro-meteorological data to simulate
groundwater table fluctuation. Lallahem et al. (2005) showed the feasibility of using
ANN to estimate groundwater level in an unconfined chalky aquifer. Daliakopoulous
et al. (2005) examined the performance of different ANN architectures and training
algorithms in groundwater table forecasting. Above studies, however, focus on apply-25

ing ANN in large-scale semiarid or arid watersheds, where groundwater table is less
variable and long-term groundwater table variation (e.g. monthly, annually) is of more
concerns. In addition, these studies use historical groundwater tables as inputs to the
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network, requiring continuously long groundwater table recordings which can be a lux-
ury for many regions.

This study, for the first time, applies ANN to forecast the groundwater table in
a tropical wetland – the Nee Soon Swamp Forest (NSSF) in Singapore. Being nour-
ished with water supply from reservoirs and precipitation, the groundwater table in the5

NSSF is close to the ground level and extremely sensitive to the changes in hydro-
meteorological conditions. Forecast of groundwater tables in the NSSF is of great im-
portance to provide sufficient reaction time for human intervention to maintain favorable
hydrological conditions for conserving local ecosystem. This study selects surrounding
reservoir levels and rainfall as inputs to the network, and the forecast is made with 310

leading times, i.e., 1 day, 3 days and 7 days. The methodology, application, results and
conclusions will be elaborated in the following sections.

2 Methodology

2.1 Overview

Artificial neural networks (ANNs) are inspired by biological neural networks with the15

intention to emulate the way in which human brains perform a particular task. As de-
fined by Haykin (1999), ANNs are massively parallel distributed processors made up of
simple processing units, known as neurons, which have a natural propensity for storing
experiential knowledge and making it available for use. ANNs resemble human brains
in two aspects:20

– Knowledge is acquired by the network from its environment through a learning
process.

– Interneuron connection strengths, known as synaptic weights, are used for storing
the acquired knowledge.
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The fact that neurons can be interconnected in numerous ways results in numerous
possible topologies that can be divided into two basic classes, i.e., feedforward neu-
ral networks (FNNs) and recurrent neural networks (RNNs). In FNNs information flows
from inputs to outputs in only one direction, whereas in RNNs some of the information
can flow not only in one direction from input to output but also in opposite direction.5

RNNs can use their internal memory to process arbitrary sequences of inputs. How-
ever, due to their complicated architecture, most RNNs suffer from scaling issues, i.e.,
RNNs could not be easily trained for large number of neurons nor for large number of
inputs (Levin, 1990).

There are many algorithms for training neural network models, most of which employ10

some form of gradient descent using backpropagation to compute the actual gradients
(Sexton and Dorsey, 2000; Mandischer, 2002). The backpropagation algorithm, imple-
mented by taking the derivative of the cost function with respect to the synaptic weights
and then changing the weights in a gradient-related direction, is usually classified into
three categories, i.e., steepest descent, quasi-Newton and conjugate gradient (Haykin,15

1999).
This study opts for a standard FNN and a quasi-Newton training algorithm, more

specifically a multilayer perceptron (MLP) trained with the Levenberg–Marquardt (LM)
algorithm, attributing to its superior accuracy in groundwater table forecasting (Dali-
akopoulous et al., 2005).20

2.2 Multilayer perceptron

Multilayer perceptron (MLP), as a standard FNN, was developed for pattern classifica-
tion by Rosenblatt (1958). Figure 1 shows the architecture of a typical MLP consisting
of an input layer, one hidden layer and an output layer. The input signals propagate
in a forward direction through the network, and each neuron is connected to all the25

neurons in the previous layer.
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In mathematical terms, a computational neuron in the hidden or output layers can be
described by following pair of equations:

u =
n∑
i=1

wixi (1)

and

y =ϕ (u+b) (2)5

where x1, x2, ..., xn are the input signals to the neuron, w1, w2, ..., wn are the synaptic
weights, u is the linear combiner of the input signals, b is the bias, ϕ(·) is the activation
function, and y is the output signal of the neuron.

The activation function ϕ(·) is used for limiting the amplitude of the output signal of
a neuron, typically to [0,1] or [−1,1]. As two commonly used activation functions, the10

logistic function and threshold function can be formulated respectively as follows:

ϕ(v) =
1

1+exp(−av)
(3)

ϕ(v) =

{
1 v ≥ 0

0 v < 0
(4)

where v = u+b is the net input to the neuron and a is the slope parameter.
The backpropagation algorithm is generally used for training the MLP in a super-15

vised manner (Werbos, 1974). The universal approximation theorem also states that
a single hidden layer is sufficient for the MLP to compute a uniform approximation of
any continuous functions (Hornik et al., 1989).

2.3 Levenberg–Marquardt algorithm

The Levenberg–Marquardt (LM) algorithm, independently developed by Levenberg20

(1944) and Marquardt (1963), provides a numerical solution to the problem of mini-
9322

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/9317/2015/hessd-12-9317-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/9317/2015/hessd-12-9317-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 9317–9336, 2015

Technical Note:
Application of
artificial neural

networks

Y. Sun et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

mizing a nonlinear function. The update rule of the LM algorithm can be presented as
follows:

wk = wk −
(

JTkJk +µk I
)−1

Jkek (5)

where k is the iteration index, J is the Jacobian matrix, µ is the combination coefficient,
I is the identity matrix and e is the error vector.5

The LM algorithm essentially blends the steepest descent method and the Gauss–
Newton algorithm. The optimization process is guided by the combination coefficient
µ. Around the error surface with complex curvature, the LM algorithm switches to the
steepest descent algorithm with a bigger µ, whereas if the local curvature is proper to
make a quadratic approximation, µ can be decreased, giving the LM algorithm a step10

closer to the Gauss–Newton algorithm. The LM algorithm is faster, more stable and
less easily trapped in local minima than other algorithms (Toth et al., 2000).

3 Application

3.1 Study case

Figure 2 shows the geographical location of the study area – the Nee Soon Swamp15

Forecast (NSSF) in Singapore. The NSSF is located in the northern part of the Sin-
gapore central catchment nature reserve bounded by the Upper Seletar, Upper Peirce
and Lower Peirce reservoirs. As the only substantial freshwater swamp forest remain-
ing in Singapore Island, the NSSF houses a diversity of flora and fauna some of which
are found nowhere else in Singapore or the world (Karunasingha et al., 2013).20

With an estimated area of about 750 ha, the NSSF covers the lower area of shallow
valleys with slow-flowing streams and a few higher grounds with dryland forests. The
elevation of NSSF ranges between 1 to 80 m above mean sea level (MSL). The aquifer
depth in the NSSF is from 20 to 40 m, and the major soil type features silty sand with
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a hydraulic conductivity of 4.05×10−5 ms−1. Figure 2 also depicts the locations of the 4
piezometers installed for groundwater table monitoring. The piezometers are deployed
near the streams, where the observed groundwater tables vary between 0 to 1 m below
the ground level.

3.2 ANN setup5

The surrounding reservoirs serve as important fresh water storage for Singapore. The
reservoir levels are kept at relatively high levels ranging from 10 to 40 m above MSL.
Singapore has a typical tropical rainforest climate with abundant rainfall; the annual
rainfall at the NSSF region can be as high as 3000 mm. Reservoir levels and rainfall,
as the major water source and driving force for the regional groundwater, are fed to the10

networks as inputs, while the output is the observed groundwater tables with a leading
time of 1 day, 3 days and 7 days. The network is therefore composed of an input layer
with 4 input neurons (including 3 reservoir levels and one rainfall), a hidden layer with
10 neurons (determined by trial and error), and an output layer with 4 output neurons
(future observed groundwater tables at the 4 piezometers). In addition, the logistic15

function and threshold function are respectively adopted as the activation functions for
the hidden layer and the output layer.

Daily observed data, i.e., reservoir levels, rainfall and groundwater tables, are avail-
able in 2012 and 2013. The data set is divided into 3 subsets as follows:

– Training data (January 2012 to December 2012)20

Training data are used for adjusting the synaptic weights in the network. An entire
year’s data are selected as the training data. Exposed to the seasonal cycle, the
network will be trained in a more robust manner.

– Cross validation data (January 2013 to June 2013)

Cross validation data are used for avoiding overfitting. When the errors between25

the predicted values and desired values in the cross validation data begin to in-
9324
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crease, the training stops and this is considered to be the point of best general-
ization. Half a year’s data are selected as the cross validation data.

– Testing data (July 2013 to December 2013)

Testing data are used for evaluating the performance of the network. Once the
network is trained, the weights are frozen; the testing set is fed into the network5

and the network output is then compared with the desired output. Remaining half
a year’s data are selected as the testing data.

4 Results and discussion

Figure 3 illustrates examples of the observed groundwater tables and the ANN-
forecasted groundwater tables at P1 with a leading time of 1 day, 3 days and 7 days; the10

corresponding scatter plots are presented in Fig. 4. The 1 day network forecast agrees
well with the observed groundwater tables, whereas the discrepancies become larger
when leading time increases to 7 days. The response of the groundwater tables to the
system forcings – reservoir levels and rainfall, for such a confined and wet catchment
as the NSSF, is rapid and sensitive. When the leading time progresses, the correla-15

tion therefore fades out between the inputs and outputs, and the accuracy of the ANN
forecast decreases. In addition, the groundwater tables experience a drastic drop in
July and August 2013, caused by a continuous two-month drought. As such a drought
condition does not exist in the training data, the ANN tends to over-predict the ground-
water tables for that period. In general, the network forecast successfully resolves the20

rising and falling tendencies of the groundwater tables, resulting in acceptable forecast
accuracy.

Figures 5 and 6 respectively present the groundwater table curves and scatter plots
at P4. P4 is located near the Upper Seletar reservoir, and the groundwater table is
affected by the spillway discharge released from the reservoir. Failing to include the25

spillway information makes the ANN less competent in capturing the groundwater ta-
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ble extreme values caused by the spillway discharge, and hence results in the lower
forecast accuracy at P4.

Table 1 summarizes the ANN forecast efficiency through evaluating the root mean
square error (RMSE) and the correlation coefficient (r). The RMSE and r are respec-
tively formulated as:5

RMSE =

√
1
l

∑l

i=1

(
gi −g′i

)2
(6)

r =

∑l
i=1

(
gi −gi

)(
g′i −g

′
i

)
√∑l

i=1

(
gi −gi

)2∑l
i=1

(
g′i −g

′
i

)2

(
gi =

1
l

∑l

i=1
gi ; g

′
i =

1
l

∑l

i=1
g′i

)
(7)

where l is the length of the time series, gi are the observed groundwater tables, and
g′i represent the ANN-forecasted values.

The forecast accuracy decreases slightly when the leading time increases due to10

the rapid and sensitive response of the groundwater tables to the system forcings. The
RMSE is in general within 10 cm with the exception at P4 caused by the absence of the
spillway information. Averaged over the 3 leading times, at P1 to P3 the RMSE is less
than 8.0 cm with correlation coefficient r higher than 0.7, whereas at P4 the averaged
RMSE and correlation coefficient r are respectively 13.8 cm and 0.67.15

5 Conclusions

This study, for the first time, applies artificial neural networks (ANNs) to predict the
groundwater table variations in a tropical wetland – the Nee Soon Swamp Forest
(NSSF) in Singapore. The groundwater table, in such a confined freshwater swamp
forest, varies rapidly in the superficial aquifer layer and is very sensitive to the changes20

in the hydro-metrological condition. The complex geological condition and demand on
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ecology conservation hinder the installation of monitoring stations to acquire the nec-
essary input information for the numerical models. In contrast, the ANN solely utilizes
the easily accessible surrounding reservoir levels and rainfall as inputs to forecast the
groundwater tables, without requiring any other prior knowledge of the system’s physi-
cal properties.5

The forecast is made at 4 piezometer locations with 3 leading times. The ANN fore-
cast shows promising accuracy, while its performance slightly decreases when the
leading time progresses due to the fading correlation between the network inputs and
outputs. The network forecast, even at leading time 7 days, still successful resolves the
rising and falling tendencies of the groundwater tables, resulting in acceptable forecast10

errors. Averaged over the 3 leading times, the RMSE is within 10 cm and the correla-
tion coefficient r is higher than 0.7 at P1 to P3, whereas at P4 the averaged RMSE and
correlation coefficient r are respectively 13.8 cm and 0.67 caused by the absence of
the spillway information.

In this study, surrounding reservoir levels and rainfall are selected as ANN inputs.15

The limited number of inputs eliminates the data demanding restrictions inherent in the
numerical models. However, improvements are expected if trained with more inputs,
such as spillway discharge, evapotranspiration, water level measurements etc. Less
data demanding, lower computational cost and higher site-specific forecast accuracy
are the advantages of the ANN-based approach over the physical-based numerical20

models. Numerical models, however, can be applied to describe the system processes
over the entire model domain given sufficient information on the model inputs. There-
fore, the ANN and numerical model can act as natural complements in such a way
that ANN is more suitable for site-specific forecast while the numerical model provides
a better spatial coverage.25

Acknowledgements. The authors gratefully acknowledge the financial support of the Tropical
Marine Science Institute (TMSI) and National Parks Board (NParks) Singapore. The research
presented in this work is carried out as part of the research programme – Nee Soon Swamp
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Table 1. Evaluation statistics of the ANN forecast.

P1 P2 P3 P4

RMSE r RMSE r RMSE r RMSE r
(cm) (cm) (cm) (cm)

1 day 5.4 0.88 6.4 0.78 5.2 0.77 12.2 0.69
3 day 8.2 0.76 7.1 0.76 6.6 0.71 13.3 0.68
7 day 9.9 0.64 9.2 0.72 8.6 0.67 15.8 0.65

Average 7.8 0.76 7.6 0.75 6.8 0.72 13.8 0.67
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Figure 1. Architectural graph of a typical multilayer perceptron.
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Figure 2. Geographical location of the Nee Soon Swamp Forest in Singapore.
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Figure 3. Observed vs. ANN-forecasted groundwater tables (P1).
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Figure 4. Scatter plots of observed and ANN-forecasted groundwater tables (P1).
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Figure 5. Observed vs. ANN-forecasted groundwater tables (P4).
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Figure 6. Scatter plots of observed and ANN-forecasted groundwater tables (P4).
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